Self-Supervised Clustering for Codebook Construction: An Application to Object Localization
نویسندگان
چکیده
Approaches to object localization based on codebooks do not exploit the dependencies between appearance and geometric information present in training data. This work addresses the problem of computing a codebook tailored to the task of localization by applying regularization based on geometric information. We present a novel method, the Regularized Combined Partitional-Agglomerative clustering, which extends the standard CPA method by adding extra knowledge to the clustering process to preserve as much geometric information as needed. Due to the time complexity of the methodology, we also present an implementation on the GPU using nVIDIA CUDA technology, speeding up the process with a factor
منابع مشابه
A Coloring Method of Gray-Level Image using Neural Networks
In this paper, we describe a coloring method of gray-level images in a restricted area based on neural networks. The coloring method employs color clustering and classiication algorithms to images in an application area. In this research, the self-organizing feature map algorithm for clustering is applied to construction of a codebook. Variations of intensity in the gray-level image are classii...
متن کاملWeakly supervised codebook learning by iterative label propagation with graph quantization
Visual codebook serves as a fundamental component in many state-of-the-art visual search and object recognition systems. While most existing codebooks are built based solely on unsupervised patch quantization, there are few works exploited image labels to supervise its construction. The key challenge lies in the following: image labels are global, but patch supervision should be local. Such imb...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملHierarchical clustering of self-organizing maps for cloud classification
This paper presents a new method for segmenting multispectral satellite images. The proposed method is unsupervised and consists of two steps. During the rst step the pixels of a learning set are summarized by a set of codebook vectors using a Probabilistic Self-Organizing Map (PSOM, [9]) In a second step the codebook vectors of the map are clustered using Agglomerative Hierarchical Clustering ...
متن کامل